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Abstract
Our current approach to automatically label features in CT images of hardwood logs classifies
each pixel of an image individually.  These feature classifiers use a back-propagation artificial
neural network (ANN) and feature vectors that include a small, local neighborhood of pixels
and the distance of the target pixel to the center of the log.  Initially, this type of ANN was
able to classify clear wood, bark, decay, knots, and voids in CT images of two species of oak
(Quercus rubra, L., Quercus nigra, L.) with 95% pixel-wise accuracy.  Recently we have
investigated other ANN classifiers, comparing 2-D versus 3-D neighborhoods and species-
dependent (single species) versus species-independent (multiple species) classifiers using oak,
yellow poplar (Liriodendron tulipifera, L.), and black cherry (Prunus serotina, L.) CT images.
When considered individually, the resulting speciesdependent classifiers yield similar levels of
accuracy (96-98%); however, all classifiers achieve greater than 91% accuracy. 3-D
neighborhoods work better for multiple-species classifiers and 2-D is better for single-species.
Multiple-species classifiers, whose training included both cherry and yellow poplar examples,
exhibit the lowest accuracy. Nevertheless, when this combination of species is avoided, there
is no statistical difference in accuracy between single- and multiple-species classifiers,
suggesting that a multiple-species classifier can be applied broadly with high accuracy.
Because all reported accuracy values are prior to postprocessing operations (which visually
improve classification accuracy), we are confident that even the least accurate classifiers would
be adequate for industrial implementation.
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1 Introduction
Most of the high- and medium-grade hardwood lumber sawn in the US goes into the
production of appearance-related goods, e.g., furniture, cabinets, moulding. Because the value
of hardwood lumber is directly related to the percentage of clear-wood cuttings that it
contains, each log must be sawn to minimize the defects in the resulting boards. Traditionally,
the sawyer chooses a sawing strategy by visually examining the exterior of a log and
dynamically adjusting the cutting face as sawing exposes the log interior. This type of sawing
is “information limited” in the sense that the sawyer only has knowledge of external indicators
of internal features (i.e. defects). Developing nondestructive sensing and analysis methods
that can accurately detect and characterize interior defects is critical to future efficiency
improvements for sawmills (Occeña 1991).

A tacit assumption for eventual application of internal scanning to log sawing is that
knowledge of internal defects can lead to choosing the best sawing position and sawing
method. Making the correct choice will allow mills to realize increased value gains. Log
breakdown in this scenario is “fully informed”, where the sawyer has knowledge about internal
feature size, type, and location. CT scanning has been investigated (e.g., Aune 1995, Benson-
Cooper et al. 1982, Birkeland and Holoyen 1987, Burgess 1985, Cown and Clement 1983,
Davis and Wells 1992, Grönlund 1992, Grundberg and Grönlund 1992, Harless et al. 1991,
Hodges et al. 1990, Hopkins et al, 1982, Lindgren 1991, Onoe et al. 1984, Roder 1989,
Schmoldt 1996, Taylor et al. 1984) as providing processing-critical internal defect information.
Between the steps of (1) scanning and (2) applying scan information to log sawing, however,
lies a third step in which defects and the log surface are automatically delineated.

Early work on automatically labeling internal log defects established the feasibility of utilizing
CT images for this purpose (e.g., Funt and Bryant 1987, Taylor et al. 1984). These
researchers, and others since, have employed a variety of methods to segment different regions
of a CT image and then to interpret, or label, those segmented regions. While those initial
efforts demonstrated feasibility, they had some limitations, e.g., anecdotal, or limited
statistical, defect labeling accuracy reported, no effort to assess or to achieve real-time
operability, and little use of texture information. Recent work by us (Li et al. 1996, Schmoldt
et al. 1997) has demonstrated highly accurate labeling of log defects in CT imagery. In contrast
to the previous global approaches that separate the tasks of segmentation and region labeling,
this approach operates using local, pixel neighborhoods primarily, and effectively combines
segmentation and labeling into a single classification step. A feed-forward artificial neural
network (ANN) can be trained to accept CT values from a small 2-dimensional (2-D) or 3-
dimensional (3-D) neighborhood about the target pixel, and then assigns a particular class label
to each pixel. In order to accommodate different types of hardwoods, a histogram-based
preprocessing step normalizes CT density values prior to ANN classification. Morphological
postprocessing is used to refine the shapes of detected image regions. This approach mitigates
the limitations of previous approaches, that is, accuracy can be evaluated quantitatively, defect
labeling can be accomplished in real time, and texture information is utilized in the
segmentation-classification step.



Accuracy achieved by this classification approach is very high (95%) at the pixel level
(Schmoldt et al. 1997). This previous work, however, used two species of oak only, and
processed 3-D neighborhoods almost exclusively. The current study extends that work to
look at the interaction of neighborhood dimensionally (2-D vs. 3-D) and single- vs. multiple-
species classifiers, with respect to their impact on classifier accuracy. The issue that we
sought to resolve here is whether we could develop species-independent classifiers of high
accuracy using our ANN, local-neighborhood approach.

2 Neural Net Classifiers
We have developed several species-dependent classifiers and several species-independent
classifiers for different shaped neighborhoods in CT images. Both 2-D and 3-D neighborhoods
have been considered. All of these classifiers contain the same modules, which are: (1) a
preprocessing module, (2) an ANN-based classifier, and (3) a post-processing module. The
preprocessing module separates wood from background and internal voids, and normalizes the
CT density values. The ANN classifier labels each pixel of the image. The post-processing
step removes some of the spurious misclassifications. The major difference between the
various classifiers we have developed is that they are trained with different types of input
features and have different sets of ANN weights.

2.1 The Preprocessing Module

2.1.1 Background Segmentation
Background segmentation, which separates the wood region (foreground) from background and
internal voids, is the first step of the preprocessing module. This step eliminates portions of
the image from further analysis which, in turn, simplifies the classification procedure and
decreases classification time. Background thresholding can be accomplished either statically or
dynamically. This research applies Otsu’s dynamic thresholding method (Otsu 1979). It has
demonstrated effectiveness for segmenting CT images of hardwood logs previously (Li et al.
1996).

Otsu’s method assumes a bimodal distribution, in which a threshold t is selected for the
histogram h(i) to minimizes the weighted within-mode variances (or, alternatively, maximizes
the weighted between-mode variances) When using this thresholding method directly,
however, decay in CT images was found to be categorized with background because the
presence of decay in an image creates a trimodal histogram. To avoid this problem, a weighting
function w(i) is applied to the original image histogram before applying Otsu’s method. This
weighting function is given by

(1)



where i is the CT number, b is set to 2047 (the largest possible CT value in 11-bit data), and
xcw is the value of the clear wood peak in the histogram. Then the best threshold is determined
by applying Otsu’s method to the new histogram function, h’(i) = h(i) · w(i). After
thresholding the original CT image, the background region is set to zero, and these pixels are
ignored in subsequent processing steps. The original CT values are not modified in this step.

2.1.2 Normalization
Normalizing CT image values is the second step of the preprocessing module. The values in
CT images are directly related to the density of the object. Because different species and
different logs vary in density, somewhat different ranges of CT values can result. Histogram
normalization translates the original CT image values into new values without disturbing the
invariant associations that internal log features have with particular regions of the CT
histogram. These associations seem to be, in our experience, consistent across many different
species of logs in the green state (i.e., freshly cut).

The transformation we developed is:

(2)

where x0 is the original CT value, xnorm is the normalized value, xcw is the original CT value of
the clear wood peak, xs is an arbitrarily selected anchor value that is greater than the CT value
of the clear wood peak. The quantity α is a constant that determines the steepness of the
curve and has been set to 10/xcw. After histogram normalization, the new value of the clear
wood peak in an image histogram is approximately 1.0. This translation also stretches the
histogram so that mid-histogram features, such as decay, are not compressed into the clear
wood portion of the histogram. Normalized CT values for each pixel are used directly by the
ANN classifiers.

2.2 ANN Classifiers
The ANN classifier is the seminal part of this classification system. Back-propagation neural
networks were chosen because of their documented effectiveness for pattern-matching
problems, and their relative ease of use. Using an ANN, each non-background pixel is labeled.
This section describes the feature vectors and classifier topologies used.

2.2.1 Feature Vectors
Selecting useful features for an ANN is extremely important because they determine how well
the classifier learns and consequently how it will perform on unseen data. In this work, the
features of each pixel that are extracted from a CT image are the histogram-normalized values
of the pixels. These pixels belong to the neighborhood of the pixel under consideration (the
target pixel). For 2-D analysis, a pixel’s neighborhood contains the pixels within a 5×5
window; for 3-D analysis, its neighborhood contains the pixels within a 3×3×3 window, i.e.



including 3×3 windows from adjacent CT images. Additionally, because some defects, such as
splits, are near to the center, and some of them, such as bark and sapwood, are close to the
outside edge of the log, the distance from the center of the log to the target pixel is also used as
a feature. This distance measure contains contextual (or global) information that can improve
classification. The neighborhood of a pixel under consideration for 2-D and 3-D analysis is
shown in Figure 1.

Figure 1: ANNs containing a 2-D window (a) and a 3-D window (b) illustrate the network
topology and relationship of input images to output classifications. The top left pixel in (a) is
the input of the first node in the 2-D ANN, while the top left pixel in the previous slice (b) is
mapped to the input for the first input node of the 3-D ANN. The distance r is the last input
to the ANN in both cases.



2.2.2 Topology
The topology of a neural network has an effect on the speed of convergence during training,
and on the accuracy of the classification. Based on prior results (Li et al. 1996), the number of
hidden nodes was chosen to be 12. The number of output nodes for the ANNs differed,
however. In different families of species-dependent and species-independent classifiers, there
are different defects to be labeled. For example, oak classifiers detect five classes: clear wood,
knots, bark splits, and decay. Yellow poplar (Liriodendon tulipifera, L.) and oak combined
classifiers identify six classes: heartwood, knots, bark, splits, decay, and yellow poplar
sapwood. In 2-D classifiers, the topology is 26-12-5 or 26-12-6, which means that the
structure of the neural network has 26 input nodes, 12 hidden nodes, and 5 or 6 output nodes.
In 3-dimensional classifiers, the topology is 28-12-5 or 28-12-6, which has a similar
interpretation.

2.3 Post-processing
Because classification features are based primarily on local neighborhoods, spurious
misclassifications tend to occur at isolated points. A post-processing module is used to
remove these small regions, and therefore improve overall system performance. The module
includes two mathematical morphological operations: erosion and dilation.

After passing though an ANN classifier, a CT image is labeled and treated as a gray-level
image. Then the image is post-processed by the morphological operations of erosion followed
by dilation using a 5-point structuring element. In a CT image, splits appear close to the
center of a log image, and their appearance after classification is a narrow line. If a split is
post-processed, it is often deleted by the erosion operation. Hence, for all classifiers in our
study, an entire image is not post-processed, only the outer regions of the log are post-
processed. The range of the post-processed region of an image is currently selected manually.
Each pixel whose distance r is greater than 0.75 times the ideal log radius is chosen to be post-
processed. This approach deletes misclassified small areas-which occur mostly near the
outer edges of the log-but still retains important information (like splits) near the center of
the log.

2.4 Training and Testing
An entire training/testing set for one hardwood species consists of approximately 1000
samples. 10-fold cross validation was used to evaluate the accuracy of each classifier. This
means that the training set is randomly divided into 10 mutually exclusive test partitions of
approximately equal size. For each of the 10 stages of training, one partition is designated as
the test set, and the remaining samples in other partitions are used to train the neural network.
In successive stages, different partitions are used for testing and the remaining samples are
used for training. The average classification accuracy over all 10 stages of training is reported
as the cross-validated classification accuracy. Cross validation not only provides a nearly
unbiased estimate of the true classifier error rate, but the 10 estimates provided allow
statistical analyses to be performed.



Table 1. Distribution of training/testing samples taken from different logs and different
species. Decay was not present in the yellow poplar samples, and sapwood was not
distinguished cherry and oak.

Feature type

Species clear knots bark splits decay sapwood

cherry_170 47% 16% 15% 11% 11%

cherry_512 43% 16% 17% 12% 12%

oak 38% 13% 16% 17% 16%

yellow poplar 46% 15% 15% 5% 19%

Initial attempts to process yellow poplar images used a 28-12-4 topology for the 3-D ANN,
which means that this preliminary classifier had four outputs: clear wood, knots, bark and
splits (decay is not present in our yellow poplar images). For yellow poplar logs is which
both heartwood and sapwood are present, the classifier performed quite poorly. This occurs
because CT image values (density) for heartwood and sapwood are very different in yellow
poplar. Therefore, it became necessary to distinguish yellow poplar sapwood from the
generalized clear wood class (adding an additional classifier output for this class) in order to
develop accurate classifiers that used yellow poplar image data.

Using 10-fold cross-validation we developed individual classifiers for each species—oak,
yellow poplar, and cherry—using both 2-D and 3-D feature vectors (6 classifiers). Images
used were the nominal (2.5mm)3 resolution. We also developed multiple-species classifiers:
pairing 2 species at a time, and also combining all 3 species together. These were also trained
using 2-D and 3-D feature vectors for a total of 8 multiple-species classifiers. Finally, the
finer resolution cherry images (0.95mm)3 were used to train both a 2-D and 3-D classifier.

3 Experimental Design
As noted above, 1000 samples were taken from each of the species: oak, yellow poplar, and
black cherry (Prunus serotina, L.). The percentages of these samples for each feature type
across the different species appear in Table 1. Both oak and yellow poplar images have pixel
resolution 2.5×2.5×2.5 mm3. Whereas, the cherry log images were generated by a different
scanner at a different resolution, approx. 0.95×0.95×0.95 mm3. Because image texture differs
at these different resolutions, we could not combine data across resolutions for multiple-
species classifier development. Consequently, 3×3×3 neighborhoods in the 512×512 cherry
images (cherry_512) were combined to produce new images (cherry_170) with approximately
2.84×2.84×2.84 mm3 resolution. We felt that these averaged images would provide comparable
texture to our earlier 2.5×2.5×2.5 mm3 images. Having multiple resolutions within the same
species also allowed us to compare classifier accuracy for 2 different image resolutions.



4  Resu l t s
Classification accuracies for the different classifiers appear in Figure 2. These line plots seem
to indicate that 2-D has higher accuracy than 3-D for single-species classifiers, and the reverse
performance for multiple-species classifiers. However, it is impossible to determine from
these performance estimates whether these apparent differences reflect real accuracy
differences. However, because ten-fold cross-validation was used, each trained classifier
actually has 10 estimates of classification accuracy, resulting from the accuracy rates from each
partition of the data sets. Therefore, these estimates can be used as samples in statistical
Analysis of Variance (ANOVA).

Figure 2: 2-D and 3-D classifier accuracies are plotted for each of the ANN classifiers—oak
(RO), cherry (CH), yellow poplar (YP), 512×512 cherry (CH_512), cherry/oak (CH_RO),
cherry/yellow poplar (CH_YP), oak/yellow poplar (RO_YP), and all 3 species combined
(COMB).

In our first statistical test, we separate the full set of classification rates into two groups:
dimensionality, which includes two-dimensional and threedimensional classifiers, and
cardinality, which includes single (species-dependent) and multiple (species-independent)
classifiers. ANOVA treatments, in this case, are single and multiple cardinality, and are
blocked on the dimensionality of the classifiers (2-D or 3-D). The f-ratio results for the
dimensionality and cardinality are 0.055 (p = 0.815) and 27.4 (p < 0.001), respectively. It is
clear that the F ratio of the dimensionality is much lower than that of cardinality (the former
F-ratio is not significant), which indicates (at this point) that differences exist between the
mean classification rates for the single- and multiple-species classifiers. The interaction of
dimensionality and cardinality is also significant, indicating a combined effect. This can be
seen in the average classification rates of Figure 2, where 2-D rates are generally higher for
single-species classifiers and 3-D rates are generally higher for multiple-species classifiers.



To understand greater details about the differences between dimensionality and cardinality, we
performed ANOVAs for single- and multiple-species classifiers separately. For the single-
species classifiers, ANOVA treatments are species (CH, RO, and YP) and dimensionality (2-
D and 3-D) is used for blocking. F-ratio values for species and dimensionality are 11.4
(p < 0.0005) and 9.53 (p = 0.003), respectively. Probability values associated with post-hoc T-
tests are shown in Table 2. They demonstrate that the classification rates for the cherry-
specific classifier is significantly different from both those of the oak- and the yellow poplar-
specific classifiers. However, there is no significant difference between the oak and yellow
poplar single-species classifiers.

Table 2. A matrix of pair-wise T-test probability values for the classification rates of cherry,
oak and yellow poplar single-species classifiers.

CH RO YP
CH 1.000
RO 0.000 1.000
YP 0.001 0.995 1.000

For the multiple-species classifiers, ANOVA treatments are species (CH_RO, CH_YP,
COMB, RO_YP) and dimensionality (2-D and 3-D) is used for blocking. F-ratio values for
species and dimensionality are 39.3 (p < 0.005) and 4.97 (p = 0.032), respectively. Probability
values associated with post-hoc T-tests are shown in Table 3. Those values indicate that the
CH_RO classifier has significantly greater accuracy than the other 3 multiple-species
classifiers. In addition, the RO_YP classifier has greater accuracy than the two, lowest
accuracy classifiers, COMB and CH_YP. Both of those latter 2 classifiers contain both cherry
and yellow poplar samples, which seem to create classification problems. T-tests indicate that
COMB and CH_YP are not significantly different from one another.

Table 3. A matrix of pair-wise T-test probability values for the classification rates of cherry,
oak and yellow poplar multiple classifiers.

CH_RO CH_YP COMB RO_YP
CH_RO 1.000
CH_YP 0.000 1.000
COMB 0.000 0.606 1.000
RO_YP 0.004 0.000 0.000 1.000

Based on the obvious classification problems stemming from combining cherry and yellow
poplar samples, we performed our original ANOVA again. This time, treatments were
cardinality again, but only CH_RO and RO_YP were included in the multiple-species
classifiers (no cherry and yellow poplar combinations). In addition, the fine resolution
(0.95mm) cherry classifier (CH_512) was excluded from the single-species classifiers. As
before, we blocked the ANOVA on dimensionality (2-D and 3-D). The resulting F-ratio value



for cardinality is 0.050, which indicates that there is no difference between single- and
multiple-species classification rates when cherry/yellow poplar combinations are removed.

Finally, we perform an ANOVA to compare the effect of CT resolution on classifier
performance. We eliminated the effect of dimensionality by blocking on it. We found that the
classifier for finer resolution cherry images does not differ significantly in classification rate
from the classifier used for coarser resolution cherry images.

5 Conclusions
Eight single-species classifiers were trained using both 2-D and 3-D image data. The accuracy
of all 8 classifiers is above 95%. Six, two-species classifiers were also trained using both 2-D
and 3-D image data. Two of them are oak and yellow poplar combined classifiers, two of
them are oak and cherry combined classifiers, and two are cherry and yellow poplar combined
classifiers. Their accuracy is 90%-97%. Finally, two, three-species classifiers (oak, yellow
poplar and cherry) were generated for 2-D and 3-D analysis. These two classifiers identified
six kinds of defects: clear wood, knots, bark, splits, decay and yellow poplar sapwood. Their
accuracy is about 91%-92%.

For single-species classifiers, the performance of 2-D classifiers is better than that of 3-D
classifiers. For multiple-species classifiers, the performance of 3-D classifiers is better than
that of 2-D classifiers. We conjecture that in single-species classification multiple image
planes contain redundant data that may be unimportant, or even counter-productive, for
accurate classification. For multiple-species classification, however, the extra information
contained in previous and subsequent CT slices seems to aid feature labeling, Consequently,
as we increase the species mix that a classifier must deal with, it appears that 3-D features are
important for attaining high accuracy.

Higher resolution images do not seem to have a significant difference on performance. We
were able to achieve similar accuracies in cherry using ~1mm resolution and ~3mm resolution.
This means that our ANN classification approach is general enough to be applied broadly to
CT images of varying resolutions. All that is required is resolution-specific training so that the
classifier can learn the local neighborhood patterns.

In comparing single-species classifiers and multiple-species classifiers, the performance of the
former is better than that of the latter when cherry and yellow poplar data are used. On the
other hand, when that species combination is excluded, there is no significant difference
between classification accuracy for single- and multiple-species classifiers. Yellow poplar has
traditionally been difficult to deal with because it possesses many intrinsic differences (wood
structure, density) to most other fine-grained hardwoods, e.g., cherry. Yellow poplar was
included in the study because it is an extreme case, and we desired to delineate a worst-case
scenario. Consequently, the difficulty we experienced in combining it with cherry here is
neither surprising, nor particularly worrisome. All of these accuracies (90%-98%) should be
acceptable for industrial use. Furthermore, it should be noted that all reported accuracies are
prior to post-processing. We have visually determined (via classified images) that post-



processing does improve accuracy, but we do not yet have a quantitative estimate for that
improvement. Consequently, we expect that the range of accuracies reported above is actually
higher, which further enhances its potential for industrial use.
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